PROJECT NOTES / ENGINEERING BRIEFS

A Tubular Tuning Method for Vented Enclosures*

D. B. KEELE, JR.
Electro-Voice, Inc., Buchanan, Mich. 49107

Computer-generated tables greatly simplify the selection of vent dimensions for a vented loudspeaker enclosure. Fine adjustment of vent length may be guided by a simple partial derivative expression relating resonance frequency to vent length.

INTRODUCTION: The required vent dimensions for a vented loudspeaker enclosure are usually found either by solving a set of equations or by using carefully constructed nomograms or charts based on these equations. The basic calculations may also be carried out effortlessly using a digital computer.

Once a computer is programmed to design vents, it can readily provide an enormous number of solutions at low cost and print these out in tabular format. This note describes the construction and use of such a set of tables. These provide an accurate and easy to use discrete tabular equivalent to the nomogram or chart.

VENT DESIGN RELATIONSHIPS

The resonance frequency of a Helmholtz resonator [1, p. 193] is given by

$$
\begin{equation*}
f_{B}=\frac{c}{2 \pi}\left[S_{V} /\left(L_{\mathrm{VE}} V_{B}\right)\right]^{1 / 2} \tag{1}
\end{equation*}
$$

where
$f_{B} \quad$ resonance frequency in Hz
$c \quad$ velocity of sound in air ($=343 \mathrm{~m} / \mathrm{s}$)
$S_{V} \quad$ vent cross-sectional area
L_{VE} vent effective length
$V_{B} \quad$ net internal volume of resonator or enclosure.
This relationship is based on the assumption that only a minimal amount of enclosure filling is used.

[^0]Solving for the ratio $S_{V} / L_{V E}$ in Eq. (1) yields

$$
\begin{equation*}
S_{V} / L_{\mathrm{FE}}=V_{B}\left(2 \pi f_{B} / c\right)^{2}=\mathrm{ALPHA} \tag{2}
\end{equation*}
$$

which is recognized as the reciprocal of Thiele's Eq. (61) [2, p. 391]. This equation is used to generate "ALPHA tables" as described in the Appendix. These tables relate the variables $f_{B}(\mathrm{~Hz}), V_{B}$ (cubic inches or cubic feet), and ALPHA (inches, or inches squared per inch).

The expression for effective vent length [1, p. 194] is

$$
\begin{equation*}
L_{\mathrm{VE}}=L_{V}+L_{\mathrm{VC}}=L_{V}+0.825\left(S_{V}\right)^{1 / 2} \tag{3}
\end{equation*}
$$

where
$L_{V} \quad$ actual physical length of vent
L_{VC} total inner plus outer vent end correction (assuming one end flanged and the other end unflanged).
Substituting Eq. (3) into (2) and solving for L_{V} gives

$$
\begin{equation*}
L_{V}=S_{V} / \mathrm{ALPHA}-0.825\left(S_{V}\right)^{1 / 2} \tag{4}
\end{equation*}
$$

This equation can be rewritten for the special case of a square vent of side $D=S_{V}^{1 / 2}$ yielding

$$
\begin{equation*}
L_{V}=D^{2} / \mathrm{ALPHA}-0.825 D \tag{5}
\end{equation*}
$$

The " D table" described in the Appendix uses Eq. (5) to relate the variables D, L_{V}, and ALPHA (all in inches). D is used here for convenience. Circular or rectangular vents of area $S_{V}=D^{2}$ provide equivalent tuning.

VENT CONSTRAINTS

A wide variety of combinations of D and L_{V} can provide a required value of ALPHA. The allowable or useful combinations for a given system are determined by observing practical restrictions on both L_{V} and D.

Thiele [2, pp. 390-391] points out that vent length must be restricted to a small fraction of a wavelength at the loudspeaker resonance frequency. The vent length is also restricted in practice by the available enclosure depth.

Small [3, p. 440] suggests a lower limit on vent area to minimize vent turbulence and windage noises, given by

$$
\begin{equation*}
S_{V} \leq 0.8 f_{B} V_{D} \tag{6}
\end{equation*}
$$

where V_{D} is the peak displacement volume of the driver diaphragm (effective diaphragm area times peak linear displacement) and all variables in this expression are in SI units (meters, hertz).

PROJECT NOTES/ENGINEERING BRIEFS

BASIC VENT DESIGN PROCEDURE

The basic process of designing a vent using the above relationships is thus.

1) Given: V_{B}, f_{B}.
2) Calculate: ALPHA from Eq. (2). (Look this up in the ALPHA table.)
3) Choose: L_{V} or D.
4) Calculate: D or L_{∇} from Eq. (5). (See D table.)
5) Repeat the last two steps if necessary to find an acceptable combination of L_{V} and D.

ENCLOSURE TUNING ACCURACY

It has been the author's experience that no matter how carefully and accurately the vent dimensions are calculated, the designer is fortunate if the cabinet resonance frequency obtained is within $\pm 5 \%$ of the desired value. This accuracy is seldom good enough. The sensitivity functions for the variation of f_{B} [4] show that the Thiele alignments [2] are fairly sensitive to errors in f_{B}, especially for the Chebyshev alignments. The author usually adds a correction factor of between 10 and 20 percent to the computed vent length so that the vent can be experimentally shortened to make the cabinet resonance frequency correct. The following partial derivative relating f_{B} and L_{V}, taken from Eq. (1), is quite useful in correcting the vent length:

$$
\begin{equation*}
\partial f_{B} / \partial L_{V}=-f_{B} /\left(2 L_{\mathrm{VE}}\right) \approx-f_{B} /\left(2 L_{V}\right) \tag{7}
\end{equation*}
$$

Thus if the extra length allowance results in low tuning as expected, the amount by which the vent must be shortened to provide correct tuning may be calculated as

$$
\begin{equation*}
\triangle L_{V}=-\triangle f_{B} \frac{2 L_{V}}{f_{B}} \tag{8}
\end{equation*}
$$

where
$\triangle L_{V}$ required change in vent length in inches (negative value means reduced length)
$\Delta f_{B} \quad f_{\text {required }}-f_{\text {actual }}$
L_{V}, f_{B} values for present vent length.

Fig. 1. Skeleton setup of ALPHA table. Values of vent cross-sectional area to effective length ratio are listed as a function of box resonance frequency and volume.

This correction process is usually quite accurate; it saves time compared to trial-and-error trimming.

A COMPLETE DESIGN EXAMPLE

Tune a cabinet (about $18^{\prime \prime}$ deep) of $7.8 \mathrm{ft}^{3}$ net internal volume to a resonance frequency of 25.0 Hz .

Given: $V_{B}=7.8 \mathrm{ft}^{3}, f_{B}=25.0 \mathrm{~Hz}$.
Look up: ALPHA $=1.80 \mathrm{in}^{2} / \mathrm{in}$ (On ALPHA table 6, Fig. 2).
Choose: $L_{V}=10 \mathrm{in}$.
Look up: $D=5.01$ in (on D table 9, Fig. 4).
Therefore the final vent dimensions are approximately 5 in by 5 in (or $55 / 8$-in diameter) and, allowing for 20% excess in length, 12 in deep. Note that the numerically closest table entries were taken in each look-up operation without any interpolation.

The cabinet is now tuned using these calculated dimensions and the actual box resonance frequency measured as suggested in the Appendix. Assuming a measured f_{B} of 22 Hz , the amount of vent length to remove can be calculated by applying Eq. (8):

$$
\Delta L_{V}=-3 \times \frac{2 \times 12}{22}=-3.27 \mathrm{in}
$$

Fig. 2. A portion of ALPHA table 6 which covers box frequencies $10 \mathrm{~Hz}-100 \mathrm{~Hz}$, box volumes $3.16-8.91 \mathrm{ft} .^{3}$

ALPHA										
ALPHA	(ACROSS)	D=SIDE DIMENSION OF SQUARE PORT CROSS-SECTION IN INCHES.								
SQ. IN/	IN= 1.00E 00	1.12E 00	$1.26 E 00$	1.41E 00	1.58E 00	1.78E 00	2.00E 00	$2.24 E 00$	$2.51 E 00$	2.82E 00
1 INCH	HES (DOWN)									
0.0	* 8.25E-01	9.26E-01	1.04E 00	1.17E 00	$1.31 E 00$	1.47E 00	1.65E 00	1.85 E 00	2.07E 00	2.33 E 00
7.5	* 3.18E 00	$3.40 E 00$	3.64 E 00	3.89 E 00	$4.16 E 00$	4.46 E 00	4.78 E 00	5.12E 00	$5.50 E 00$	5.90 E 00
8.0	* 3.27E 00	3.49 E 00	3.74 E 00	3.99 E 00	4.27E 00	4.58 E 00	4.90E 00	5.26 E 00	$5.64 E 00$	$6.05 E 00$
8.5	* 3.36E 00	3.59 E 00	3.83 E 00	4.10E 00	4.38 E 00	4.69 E 00	5.02 E 00	5.38 E 00	5.77E 00	6.19 E 00
9.0	* 3.44E 00	3.67E 00	3.93 E 00	$4.20 E 00$	4.49 E 00	4.80 E 00	5.14 E 00	5.51 E 00	$5.90 E 00$	$6.33 E 00$
9.5	* 3.52E 00	3.76 E 00	4.02E 00	4.29E 00	4.59E 00	$4.91 E 00$	5.25E 00	5.63 E 00	$6.03 E 00$	$6.47 E 00$
10.0	* 3.60E 00	3.84 E 00	$4.11 E 00$	$4.39 E 00$	4.69 E 00	5.01 E 00	$5.37 E 00$	5.74 E 00	$6.15 E 00$	6.60 E 00
10.5	* 3.68E 00	$3.93 E 00$	4.19E 00	4.48 E 00	4.79 E 00	5.12 EO	$5.47 E 00$	5.86 E 00	6.28 E 00	6.73 E 00
11.0	* 3.75E 00	$4.01 E 00$	4.28E 00	4.57E 00	4.88E 00	5.22 E 00	5.58 E 00	5.97 E 00	$6.39 E 00$	6.85 E 00
11.5	* 3.83E 00	4.08 E 00	4.36 E 00	4.65 E 00	4.97 E 00	5.31 E 00	5.68 E 00	6.08 E 00	6.51 E 00	6.97 E 00
12.0	* 3.90E 00	4.16E 00	4.44E 00	4.74E 00	5.06E 00	$5.41 E 00$	5.78 E 00	$6.19 E 00$	6.62 E 00	7.09E 00
37.0	* 6.51E 00	6.92 E 00	$7.36 E 00$	7.84 E 00	8.34 E 00	8.88E 00	9.45E 00	1.01E 01	1.07 E 01	1.14 E 01

Fig. 4. A portion of D table 9 which covers ALPHA values from 1.00 to 2.82 and vent length of 0.0 to 37.0 in.

This calculation shows that the desired cabinet resonance frequency should be obtained by removing $31 / 4$ in from the duct length.

CONCLUSION

The author has used a computer to compile a set of tables which reduce the vent design problem to two simple look-up operations. These tables are too lengthy for complete publication in the Journal. However, the method of table formulation is presented, and portions of the tables are shown to illustrate their use. Copies of the complete table set may be obtained for the cost of printing by writing directly to the author.

APPENDIX

Alpha Tables

The ALPHA tables yield required values of ALPHA $=S_{V} / \mathrm{L}_{\mathrm{VE}}$ (in inches or inches squared per inch) given the desired box resonance frequency f_{B} and the net internal cabinet volume V_{B}. Ten ALPHA tables span box volumes ranging from $17 \mathrm{in}^{3}$ to $891 \mathrm{ft}^{3}$ with step factors of 1.122 (20 steps per decade) and resonance frequencies ranging from 10 Hz to 100 Hz with step factors of 1.032 (75 steps per decade). A skeleton setup of an ALPHA table is shown in Fig. 1, while a portion of one of the actual tables (no. 6) is shown in Fig. 2.

Fig. 3. Skeleton setup of D table. Values of square vent dimension are listed as a function of actual port length and ALPHA.

D Tables

The D tables give values of the side dimension $D=$
$S_{V}^{1 / 2}$ for a vent of square cross-section, given the value of ALPHA and the actual length of the vent L_{F}. They may also be used to find L_{V} given ALPHA and D. Sixteen D tables cover ALPHA values ranging from 0.0001 to 8910 with step factors of 1.122 (20 steps per decade), and L_{V} values ranging from zero to 37 in in steps of 0.5 in. A skeleton setup of a D table is shown in Fig. 3, and portion of one of the actual D tables (no. 9) in Fig. 4.

Measurement of f_{B}

Benson [5, p. 471] derives a measurement method of the true value of f_{B} which is essentially independent of voice coil inductance. He develops an equation for f_{B} written in terms of $f_{L}, f_{I I}$, and f_{C} (the impedance peak frequencies) shown as

$$
\begin{equation*}
f_{B}=\left(f_{L}^{2}+f_{H}^{2}-f_{C}^{2}\right)^{1 / 2} \tag{9}
\end{equation*}
$$

where
f_{L}, f_{H} frequencies of higher and lower peaks of the
magnitude of the driving point impedance of
the driver mounted in the vented enclosure
frequency of peak of the magnitude of the
driving point impedance when the vent is com-
pletely sealed and covered up (resonance fre-
quency of closed-box system in the same box
volume).

REFERENCES

[1] L. E. Kinsler and A. R. Frey, Fundamentals of Acoustics (Wiley, New York, 1962).
[2] A. N. Thiele, "Loudspeakers in Vented Boxes," J. Audio Eng. Soc., vol. 19, Part I, pp. 382-391 (May 1971), Part II, pp. 471-483 (June 1971).
[3] R. H. Small, "Vented-Box Loudspeaker Systems, Part II: Large-Signal Analysis," J. Audio Eng. Soc., vol. 21, pp. 438-444 (July/Aug. 1973).
[4] D. B. Keele, Jr., "Sensitivity of Thiele's Vented Loudspeaker Enclosure Alignments to Parameter Variations," J. Audio Eng. Soc., vol. 21, pp. 246-255 (May 1973).
[5] J. E. Benson, "Theory and Design of Loudspeaker Enclosures, Part 3: Introduction to Synthesis of Vented Systems," Amalgameoted Wireless (Australasiai) Ltd. (AWA) Tech. Rev., vol. 14, pp. 369-484 (Nov. 1972).

Note: Mr. Keele's biography appeared in the January/ February 1973 issue.

[^0]: * This Project Note was a section of the paper "The Vented Loudspeaker Cabinet: A Restatement," presented May 5, 1972, at the 42 nd Convention of the Audio Engineering Society, Los Angeles.

