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The Analytic Impulse and the Energy-Time Curve:
The Debate Continues

D. B. (Don) KEELE, JR.

Attdio Magazine, Hachette Magazines, lnc:, N_, York, NY 10019, USA
DBK Associates, Elkhart, IN 46517, USA

Theanalyticimpulseis usedas a complex-excitatinusignaltoproducethe Energy-
Time Curve (ETC) of a system. The ETC, usually displayed on a wide-dynandc-range
log scale, is the envelope of the system's impulse response and is loosely related to the
energy decay in the system. Additional information is presented, using heuristic
arguments and simulations, to show that: 1) The ErIC is acausal in the same sense that
thetimeresponseof athex_reticalzero-phasefilterisacansal;2) A time-derivative-based
complex-excitation siglml (rather than a Hilbert-transfi_rm-basexl signfil) does not work to
extract the envelope of a system's impulse response; and 3) Even though the ETC is a
good general approximation of the energy decay in a system, it does not predict details of
the decay such as exact timing and rolloff behavior. The intent here is not to present any
radical new infi*rmation in this debate, but to explain and clarify some of the concepts.

0. INTRODUCTION

The energy-time curve (ETC), first presented by Heyser [II, [2| and used by others 131- I51,
is purported to show how the energy in a system decays as a function of time. The ETC and the
related topic of the analytic impulse has been hotly debated 161, [71. Even though the ETC has been
closely associated with time-delay spectrometry 181,other implementation methodologies can be
used to generate the ETC 191- 1121.

The primary inducement for the ETC is a need to display the impulse response of a system in
a manner that allows easy identification of significant phenomena, both high and Iow level, and
their times of occurrence. The ETC is usually plotted on a wide-dynamic-range logarithmic vertical
axis versus time, so that low-level features can be seen as well as high-level features.

Duncan [6l points out that the ETC is inherently noncausal because the imaginary part of the
analytic impulse excitation signal is derived using the Hilbert transform, which is itself noncausal
because of very slow dropoff both before and after t = 0. In a real-world situation, however,
measurements are always causal and appropriate steps are taken to minimise the noncausal
behavior of the ETC such as windowing and appropriate delays. It works out that the ETC is most
acausal for wide-bandwidth impulse responses. For narrow-band responses such as octave or one-
third-octave reverberation decay measurements in auditoriums or concert halls, the noncausal
nature of the ETC is minimal.

In this paper, I will show that the acausal nature of the ETC is closely akin to the acausalness
of a zero-phase FIR filter. This type of filter needs to be delayed to make its response causal.
Different processing and display methods for the impulse response will be illustrated, which leads
to the need for the ETC. It will be shown that a time-derivative-based complex signal will not work
for wide-band impulse response envelope extraction. Application of the ETC to a mechanical mass-
spring-damper system will show that the ETC does not exactly predict energy decay, but does a
good job in approximating the decay.

A mostly non-mathematical somewhat-tutorial treatment of these topics will be accomplished
that depends heavily on simulation examples.



1. DISPLAY OF IMPULSE RESPONSE

The impulse response contains complete information about the workings of a linear time-
invariant system. It is obtained by energizing the system with an impulse and then recording the
output of the system as a function of time. The impulse response can be generated, as well, by
alternate methods that do not actually apply an impulse to the system, such as swept sinewave 181
and pseudo-random noise I 11]. In this section, 1 will display the impulse response of a simulated
multiresonant system that both contains both high and low-level phenomena, with features that
contain a wide range of frequencies. Different display methods will be illustrated leading to the
ETC in the next section.

1.1. Simulated Multiresonant System

Fig. 1. shows the block diagram of a simulated multi-resonant system that also contains
processing blocks that allow the impulse response to be measured and analyzed. The simulated
multi-resonant system is composed of the parallel combination of three second-order bandpass
filters with various parameters and delays. Parameters were chosen so that the impulse response
frequency range covered an 8 to I ratio with various Q's, levels and delays, for each of the
resonators. The following table lists the parameters of each of the band-pass filters:

TABLE 1: BAND-PASS FILTER CHARACTERISTICS
FILTER CENTER Q LEVEL DELAY
NUMBER FREQUENCY dB Secs

Hz

1 0.5 2 -10 5
2 2 2 0 0
3 4 4 -20 2.5

The levels were chosen so that the highest impulse response peak of each individual
resonator has the indicated level. The Q of each resonator was chosen so that its impulse response
decayed significantly before the next resonator was triggered.

All simulations were accomplished using the Apple Macintosh program "Extend" Vers. 1.1k
(Highly recommended, an incredible program! Contact Bob Diamond at Imagine That, Inc., 151
Bernal Road, Suite 5, San Jose, CA 95119-1306, (408)-365-0305).

1.2. Scaling Of Linear Display

Fig. 2 shows various views of the impulse response of the simulated system of Fig. l. All
responses were plotted with a linear vertical amplitude scale over the range of I to 10 seconds.
Three different expansion factors were selected, in decade ranges from I to 100, to show the both
the high-level and low-level behavior of the response. With a linear vertical scale, it is not possible
to see both high-level and low-level components of the impulse response on the same graph, thus
the various expansion factors.

1.3. Log Display of Absolute Value

Fig. 3(a) shows the absolute value (full-wave rectified) of the impulse response plotted on a
wide-dynamic-range 100 dB log scale. Note that as the signal passes through zero, the logged
output of the absolute value actually goes to minus infinity. This generates a series of sharp vertical
lines on the display at each point where the impulse response goes to zero. Because the simulation
sample points do not coincide exactly with the zeros of the impulse response, the display does not
go to large negative dB values at each zero point.
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The display clearly shows the initial decay starting at 0 dB at 0 secs, followed by a higher-
frequency decay starting at -20 dB at 2.5 secs, and a lower frequency decay commencing at 5 secs
at a level of -10 dB. The sudden rises in level are clearly shown at the starting points of the three
resonator responses at 0, 2.5 and 5 secs.

The rise and fall of the curve with each cycle of the impulse response is inherent to this type
of display (logged absolute value). The curve clearly does not indicate the actual decay of energy in
each resonator of the system, which should be a smoothly decreasing function. What is desired is
the so-called envelope of the impulse response which should approximately follow the peaks of
this display. Averaging the logged absolute value of the impulse response should yield a curve that
comes close to this desired result.

1.4. Minimum-Phase First-Order Averaging

Figs. 3(b) and (c) show the effects of using a first-order minimum-phase low-pass filter to
smooth the logged absolute value of the impulse response. Two different cutoff (-3 dB)
frequencies were used in (b) and (c) to illustrate their effects.

In (b), a cutoff of 2 Hz was used to optimally smooth the 4-Hz highest frequency decay that
commences at 2.5 secs. The lower frequency decays are seen to have much greater ripple in their
response due to this high smoothing cutoff frequency. Some reduction in level of each peak is
noted.

In (c), the cutoff frequency of the smoothing filter was lowered to 0.5 Hz to optimally
smooth the lower frequency decay starting at 5 secs. Unfortunately, this low smoothing cutoff
frequency severely distorts the shape of the two higher frequency decays between 0 and 5 secs.

1.5. Linear-Phase Averaging

Fig. 4 shows the effects of using a linear-phase 8th-order near-Gaussian smoothing filter (a
0.05 ° equiripple design was used that maintains constant delay out to the point at which the filter's
response is 20 dB down). The constant delay of this type of filter shifts the output data to the right
depending on the filters specific delay.

In (a), a filter cutoff frequency of 2.2 Hz was used, with a delay of 0.25 secs, to smooth the
higher frequency decay. In (b), a lower filter cutoff of 0.55 Hz was used, with a delay of 1.00
secs, to smooth the lower frequency decay.

In (c), a superimposed plot of curve (b) with a one sec delayed version of the logged absolute
value response of Fig. 3(a) is shown. This value of delay synchronizes the two curves. As can be
seen, the linear-phase filtering does a much better job of approximating the envelope of the
individual decays. Unfortunately, (c) shows appreciable noncausal-like behavior in the curve,
because the response starts to rise significantly before the onset time of the individual resonators.
This effect prevents the individual resonator decays from dropping down to their correct values at
the time at which the next resonator comes in.

Note that smoothing, as was done in this and the previous section, cannot handle decay
phenomena that cover a very wide frequency or time scale. The 8 to 1 range in input frequencies in
Fig. 4 is just about the limit of envelope generation using smoothing of the logged absolute value
of the impulse response. If the range were higher, say 100:1 or 1000:1, no single value of
smoothing cutoff frequency would work for all the decays in the response. Of coarse, other
schemes such as non-linear averaging, with different attack and decay times, have been tried.
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2. THE ENERGY TIME CURVE

In order to get around the problems noted in the previous section, the energy time curve
(ETC) was developed. This scheme depends on the use of a 90 ° phase shifter to generate an
additional impulse-like response which is in phase quadrature to the original impulse response.
This additional response (called the imaginary or quadrature response) is then combined with the
original response (called the real or in-phase response) through a magnitude operation (square root
of the sum of squares) to yield the envelope response. This scheme should theoretically work for
all the frequencies in the impulse response, no matter how wide the range.

As Duncan points out [6, Section 11,the ETC can be computed in two different ways: 1. By
measuring the conventional impulse response, calculating the quadrature response from the
impulse response, and then combining the two, or 2. By separately measuring two responses, the
impulse response (as before), and the response to a special impulse that is in phase quadrature to
the original impulse, and then combining the two responses.

In the latter case (2.), the real question is what is the form of the special impulse that is in
phase quadrature to the regular impulse? The regular impulse is, of coarse, the familiar Dirac delta

function _ (t), using the symbols and nomenclature of [61.
The next two sections consider the two main contenders for the definition of the impulse that

is in phase quadrature to the regular impulse: the Hilbert-transform-based definition, and the time-
derivative-based definition. Both definitions yield an impulse whose frequency components are all
90° out-of-phase with the corresponding frequency components of the regular impulse. But as will
be shown, only one of the two yield a frequency spectrum for the quadrature-phase impulse that is
flat and equal to the spectrum of the regular impulse. This will be shown to be very crucial for
proper envelope calculation.

2.1. Hilbert-Transform-Based Analytic-Impulse Excitation

If the Hilbert transform 17, eq. (4) I is used to calculate the quadrature-phase impulse from the
regular impulse, the complete analytic-impulse signal is formed. Using complex terminology, the

analytic impulse V(t) is a complex signal with real part equal to the delta function_ (t), and

imaginary part equal to the Hilbert transform of the delta function (1 / (Trt)). These two signals are
shown in Fig. 5(a). As can be seen, the imaginary part of the analytic impulse decays very slowly
on either side oft = 0.

To calculate the ETC of a system (using the second method), the individual responses to the
real and imaginary parts of the analytic signal must be measured. These two responses are then
combined in a magnitude operation (square root of the sum of squares) to yield the ETC.

The individual responses of the system in Fig. 1, to the real and imaginary parts of the
analytic impulse, are shown in Fig. 5(b) and (c), plotted over the range of -1 to 10 secs with linear
vertical scale. The simulation was run over a range of -20 to +20 secs with 5000 steps, using
double-precision floating-point calculations (this took about 90 secs on a Mac SE/30).

Fig. 6 shows the resultant ETCs plotted on a 100 dB log scale. Fig. 6(a) shows the data
plotted over the range of -10 to + 10 secs. This essentially eliminated from the graph the startup
transients due to starting the simulation at -20 secs (the simulation should be started at time minus
infinity theoretically!). Fig. 6(b) shows the data over 0 to +10 secs and should be compared to the
previous graphs. (c) shows the ETC superimposed with the logged absolute data of Fig. 3(a).
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As can be seen from (c), the ETC does a good job of deriving the envelope for all three of the
decays. Note that no averaging was done here. The peak levels and timings of the start of the
decays were also preserved well. Unfortunately, the acausal nature of the ETC significantly
modifies the decays near their lower levels, at points just preceding the next decay peak. Steps can
be taken to minimize the acausal effects of the ETC by windowing is spectrum in the frequency
domain. The beneficial effects of using a cosine squared window are illustrated well in [61.

Comparing Figs. 4(c) and 6(c) show that the acausal nature of the ETC is quite comparable to
the equivalent acausal nature of the linear-phase filter used to smooth the rectified impulse data.

Windowing in the frequency domain regrettable, directly modifies the frequency content of
the ETC and may cause false estimates of the relative levels of different frequency ranges of a
specific response [7, Section 2.1.

2.2. Time-Derivative-Based Complex Excitation

If the time-derivative operation is used to calculate the quadrature-phase impulse from the
regular impulse [1], [6, Appendix II, an alternate complex signal is formed which is causal. With
this signal, the real and imaginary parts are indeed in phase quadrature. However, the spectral
content of the real and imaginary parts are not equal.

Fig. 7 displays the spectrum magnitude of the real and imaginary parts of both the analytic
impulse and the complex signal based on the derivative operation. Although the spectrum
magnitudes of the real parts of both signals are flat (independent of frequency), only the imaginary
part of the analytic impulse is flat and identically equal to the real part.

The spectral magnitude of the imaginary part of the derivative-based signal starts at zero at
zero frequency, and then rises indirect proportion to frequency. The spectral magnitude of the
imaginary part of the derivative-based signal is only equal to the real part at one frequency f_.
Adjusting the level of the imaginary part of the signal in relation to the level of the real part, serves
to position fEat any arbitrary frequency. This is equivalent to rotating the imaginary magnitude line
around the origin. As will be illustrated, only at and near fE will this test signal properly yield the
envelope of the impulse response.

Fig. 8 shows the envelopes measured using the derivative-based complex signal plotted on a
100 dB log scale. The level of the imaginary part of the signal was adjusted to optimally construct
the envelope for different frequency decays. The level was adjusted in (a) and (b) to yield the
correct envelope for the highest frequency decay between 2.5 and 5 sees of the response. In (c),
the level was adjusted to properly yield the envelope for the lowest frequency decay, which starts
at 5 secs. In both cases, the envelope is calculated properly only for one of the decays. Note the
higher level of (c) relative to (b) as a result of the raised imaginary part. Note that all the derivative-
based envelope plots do not exhibit any acausal effects.

3. DOES THE ETC EXACTLY PREDICT DECAY ENERGY DECAY IN A
SYSTEM?

Heyser implied that the ETC corresponds to the energy flow or decay in a system 11,
Appendix Part III]. Here I investigate this claim by computing the true energy decay in a simulated
second-order mechanical system and then compare this result with the ETC of the same system.
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3.1. Simulated Mass-Spring-Damper System

Fig. 9 shows the block diagram of a simulated second-order mass-spring-damper system. An
unconstrained mass was attached to an unmovable object with a parallel combination of spring and
damper. The motion of the mass was simulated after applying an impulse of force (like a hammer
blow) to the mass. The resultant displacement and velocity were used to calculate the total energy
decay. The parameters of the simulated system were: mass = 1kg, spring constant ---1 N/m, and
damping coefficient = 0.1 N/mis. The simulation was run with 4,000 steps over 0 to 160sees with
the impulse of force applied at t = 80 sees.

3.2. True Energy Decay

The energy decay in the mass-spring-damper system of Fig. 9 was calculated by computing

the individual potential (t/2 .....· kx _) and kineuc energies (1[2 · my-), where k = spring constant, x
= displacement, m= mass, and v = velocity, then summing to yield the true total energy decay of
the system.

Fig. 10(a) shows the predicted displacement (dark curve) and velocity (light curve) of the
mass. Fig. 11 shows the resultant total energy of the system plotted against time in three different
ways. Fig. 1l(a) shows a superimposed plot of the total energy (dark curve) with the potential
(medium curve) and kinetic (light curve) energies plotted on a linear vertical scale. Fig. 1l(b) is a
plot of total energy plotted on a linear vertical scale. Fig. 11(c) is a plot of total energy plotted on a
60 dB log vertical scale over a wider time span of 70 to 140 secs. (c) shows a sudden jump in total
system energy at t = 80 se.cs, and then a smooth linear decrease of energy (logged) over the
remaining simulation time.

Note that the energy does not decay in a purely exponential manner, but in a sequence of
small smoothed steps synchronized with the oscillation. This completely baffled me originally

-tlr
because I was expecting a purely exponential decay curve for the total energy ie E(t) = Ere .
Further thought revealed that the energy loss is not continuous but is only lost in the damper when
the mass is in motion. Maximum energy loss occurs at points of maximum velocity (zero
displacement), and energy loss is zero when the mass is rest (points of maximum displacement and
zero velocity).

3.3. ETC-Predicted Energy Decay

In parallel display with Fig. 11, Fig. 12 shows various plots of the ETC of the mass-spring-
damper system. The ETC was generated by applying an impulse to yield the displacement
function, which is the real part of the ETC, and then calculating the response to Hilbert
transformed impulse (Fig. 5(a) light curve), which is the imaginary part of the ETC. As before the
simulation extended over 0 to 160 sees with the analytic impulse applied at t = 80 sees.

Fig. 12(a) shows a superimposed plot of the magnitude of the ETC (dark curve), the real part
of the ETC (light curve, corresponds to previous potential energy), and the imaginary part of the
ETC (medium curve, corresponds to previous kinetic energy), all plotted on a linear vertical scale.
Fig. 12(b), plot of ETC on linear vertical scale. Fig. 12(c), plot of ETC on a 60 dB log vertical
scale over a wider time scale of 70 to 140 sees.

Compare the plots in this figure with the true energy decay in Fig. 11. Note the rounding of
the initial peak and the acausal build up of energy before the impulse which is a characteristic of the
ETC. Note also that the small variations in the decay do not agree with the true energy decay of
Fig. 1l, ie, the cyclic loss of energy exhibited by the true energy decay is not shown in the ETC.
All things considered, the ETC of Fig. 12(c) is a good approximation of the true energy decay in
Fig. I lc.
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4. CONCLUSIONS

I have shown through simulation examples several means for displaying the envelope of the
impulse response of a system. These included: 1. scaled plots of the impulse response plotted on a
linear vertical scale, 2. plots of the absolute value of the impulse response plotted on a log vertical
scale, 3. plots of the averaged (using both minimum-phase and linear-phase filtering) absolute
value of the impulse response plotted on a log vertical scale, and 4. ETC plots.

It was shown that linear-phase smoothed absolute value of the impulse response did a
reasonably good job of extracting the envelope, but operated only over a limited range of about 8 to
1 in impulse spectral frequency range. The linear-phase smoothing exhibited significant acausal
effects.

The ETC did the best job of extracting the envelope for wide frequency range signals but also
suffers from significant acausal effects. It was shown that the acausal effects of the ETC are similar
to the acausal effects of using a linear-phase filter to smooth the full-wave rectified impulse
response.

The time-derivative-based envelope technique was shown to operate well only over a narrow
frequency range. However, this technique did not exhibit any acausal effects, which might make it
very useful for some situations.

A mass-spring-damper system was analyzed to show that the ETC is a good approximation
of the true energy decay in the system.
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Fig. 2. Impulse response of the system modeled in Fig. 1, plotted on a linear amplitude scale at various
amplifications. (a) Times one amplification. (b) Times ten amplification. (c) Times one-hundred
amplification.
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Fig. 3. Impulse response of the system modeled in Fig. 1, plotted in various ways. (a) Absolute value of
impulse response plotted on a 100 dB log scale. (b) Absolute value of impulse response smoothed with a
first-order 2-Hz (-3 dB) minimum-phase Iow-pass filter. (c) Absolute value of impulse response smoothed
with a first-order 0.5-Hz low-pass filter. The smoothing in (b) works well for the high-frequency decay,
but not well for the lower-frequency responses. The smoothing in (c) works well for the low-frequency
decay, but swamps the decay of the higher-frequency responses.



LEVEL - dB

0 ....................

-90 ....................

-100
0 2.5 5 7.5 10

TIME - Sees

Plotter I/0

LEVEL - dB

0 ....................

-I0 ....................

':' (b)
-80 ....................

-90 ....................

-100

0 2.5 5 7.5 10

TIME - Sees

Plotter I/O

LEVEL- dB

o :I: ( )

-10

-20

-30

-40

-50 C
-60

-70

-80

-90

-100 . · ,
0 2.5 5 7.5 10

TIME - Sees

Fig. 4. Linear-phase smoothed impulse responses of the system modeled in Fig. I. (a) Absolute value of
impulse response smoothed with a 2.2-Hz Gaussian low-pass filter with a delay of 0.25 sec. (b) Absolute
value of impulse response smoothed with a 0.55-Hz Gaussian low-pass filter with a delay of 1.00 sec. (c)

Superimposed plot of the smoothed data of (b) with the unsmoothed data of Fig. 3 (a) delayed by one
second. The linear-phase filtering works significantly better than the first-order filtering of Fig. 3 in

yielding the shape of the impulse decay. As before however, a lower cutoff frequency works well for the
low-frequency responses, but not for the high-frequency responses, and vice-versa.
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Fig..5, Plot of the real and imaginary parts of the analytic impulse, and the responses of the system
modeled in Fig. I to the individual parts of the analytic impulse. (a) The real part (dark line) and imaginary
part (light line) of the analytic impulse excitation signal. (h) Response of the system to the real part of the
analytic impulse plotted on a linear vertical scale over the range of -1 to 10 secs. (c) Response of the
system to the imaginary part of the analytic impulse plotted on a linear vertical scale over the range of -1 to
10 secs. The magnitude of (h) and (c), considered jointly, constitute the ETC.
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Fig. 6. ETC magnitude plots of the analytic impulse response of the system modeled in Fig. 1 Iresponses
of Fig. 5 (b) and (c)I, plotted on a 100 dB log scale. (a) ETC plotted over the range Of - 10 to l0 sees. (b)
ETC plotted over the range of 0 to 10 sees. (c) Superimposed plot of the ETC data of (b) with the
unsmoothed data of Fig. 3 (a). Note that the ETC closely follows the decay of each individual response.
but suffers from significant acausal-like anticipatory effects that precede each decay peak.
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Fig. 7. Display of the spectrum magnitudes of the individual real and imaginary parts of the analytic
impulse excitation signal, and the time-derivative-based complex excitation signal, plotted for positive
frequencies. Note that the magnitudes of the real and imaginary parts of the analytic signal are equal and
independent of frequency. Note also that the magnitudes of the real and imaginary parts of the time-
derivative-based complex signal are only equal at one frequency (rE). The imaginary part starts out at zero
and rises directly proportional to frequency. The level of the imaginary part of the time-derivative-based
complex signal can be adjusted to position fE at any frequency (equivalent to rotating the imaginary
magnitude line around the origin). Only at and near fE does this signal properly form the envelope of the
irepulse respons e.
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Fig, 8. Envelope magnitude plots of the response of the system modeled in Fig. I lo the time-derivative-based complex
signal, plotted on a 100 dB log scale. The envelope is calculated by combining the impulse response and a scaled doublet
response. (a) Envelope response plotted over the range of -10 to +10 sees, The level of the imaginary part of the test signal
was adjusted to properly extract the envelope of the highest frequency part (middle decay) of the system's response, Note the
absolutely causal behavior of the response, ie no false envelope is seen to exist before the onset of the decays. (b) Envelope
response of (a) but plotted over the range of 0 to +10 sees. Compare (b) to the ETC of Fig. 6 (b). (e) Envelope response
plotted over the range of -10 to + 10 sees. The level of the imaginary part of the test signal was raised to properly extract the
envelope of the lowest frequency part (third decay) of the system's resp(mse. Note the higher level of (e) relative to (b) as a
result of the raised imaginary part. Note also that tot a specific imaginary-part level, the envelope extraction only works well
for a narrow frequency range.
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Fig. 10. Plots of the scaled velocity and displacement for the mass-spring-damper system of Fig. 9. (a)
Displacement (dark curve) and velocity (light curve) of mass. (b) Displacement (dark curve) and Hilbert
transform of displacement (light curve), In (b), the real and imaginary parts of the analytic signal were
applied separately to yield the resultant curves. Correct relative amplitudes are preserved in these plots.
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Fig. l l. Plots of the true energy decay versus time for the mass-spring-damper system of Fig. 9 calculated
from the sum of the predicted potential and kinetic energies. The impulse of force is applied at t = 80 sees.
(a) Energy decay plotted on a linear vertical scale (dark line) from 70 to 110 sees, with the instantaneous

potential and kinetic energies shown in lighter lines. (b) Energy decay plotted on a linear vertical scale
from 70 to 110 secs. (c) Energy decay plotted on a 60-dB log scale over the wider time range of 70 to 140
secs. Note that the energy does not decay in a purely exponential manner, but in a sequence of small steps

synchronized with the oscillation. This is because the energy is dissipated only when the mass is in
motion. Note the instantaneous jump in energy at 80 secs when the force impulse is applied.
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Fig. 12. Plots of the ETC predicted energy decay of the the mass-spring-damper system of Fig. 9 when
the analytic impulse is applied at t = 80 secs. (a) ETC plotted on a linear vertical scale (dark line) from 70
to 110 secs, with the instantaneous squares of the real and imaginary parts of the analytic impulse response
shown in lighter lines. (b) ETC plotted on a linear vertical scale (dark line) from 70 to 110 secs. (c) Energy

decay plotted on a 60-dB log scale over the wider time range of 70 to 140 secs. Compare the plots in this
figure with the true energy decay in Fig. 11. Note the rounding of the initial peak and the accusal build up
of energy before the impulse that is a characteristic of the ETC. Note also that the small variations in the

decay do not agree with the true energy decay of Fig. 11.


