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This paper describes the theoretical design, and preliminary practical implementation
issues, of an anechoic chamber designed specifically for spherical wave propagation.
Conventional anechoic chamber design methods dictate that the acoustic impedance of
the chamber's boundaries should be purely resistive (complete absorption) over the whole
operational range of the chamber. For good loudspeaker measurements at low
frequencies, this means large chambers and long absorptive wedges. Theory suggests that
a relatively-small spherically-shaped chamber, with the source constrained to the center
of the sphere, could be designed, that operates down to any arbitrary frequency, if the
chamber walls are mass-reactive at lower frequencies where the wavelengths are much
larger than the chamber dimensions, and absorptive at higher frequencies where the
wavelengths are much shorter than the chambers dimensions.

A first-order mechanical model of the wall impedance is a massless plate, for the
sound waves to impinge upon, connected to a free-standing mass through a damper, At
low frequencies the whole assembly moves, thus presenting a mass reactance to the
wave; while at high frequencies, the mass would be essentially immobile, and thus
energy would be absorbed by the damper. The crossover point between the two modes of
operation occurs at the frequency where the wavelength is equal to the circumference of
the sphere, or equivalently, the radius of the sphere is about one-sixth wavelength.
Derivations show that the total movable mass of the chamber's walls should be exactly
equal to three times the mass of the air contained in the sphere, This paper explores
these ideas.

0. INTRODUCTION

The main purpose of an anechoic chamber is to provide a free-field environment for
acoustical testing. Traditionally, anechoic chambers are rigid-walled rectangular-shaped
enclosures, with wedges of sound absorptive material, such as fiberglass, attached to the walls.
The design goal for the chamber is complete absorption of all sound waves that impinge on the
walls, no matter what the frequency and angle of incidence, thus achieving a reflection-free open-
space-like environment, Practically, the low-frequency limit of the chamber is set by the overall
dimensions of the chamber and the length of the absorptive wedges. Large chambers with long
wedges are required for extended low-frequency operation.



A typical fairly-large chamber, with clear dimensions of 11.4 x 7.8 x 6.7 m (37.4 x 25.6 x
22.0 ft.) using wedges about 1.5 m (5 ft.) long, has an effective low-frequency cutoff of about 70
Hz [1. Wang], a not so very-low frequency. Operation down to say 30 Hz, would require a
chamber more than twice as large in linear dimension (8 times larger in volume!), with wedges
twice as long also. The 70 Hz limit assumes a source-to-sample distance which is fairly large, say
on the order of 3 to 4 m, for the example chamber. Of course, the effective low-frequency limit
may be extended down in frequency by decreasing the source-to-mic distance, or using nearfield
measurements [2]. This unfortunately, precludes assessing the possible effects of diffraction and
other source-size related effects.

A usual design requirement, for a general-purpose anechoic chamber, is the freedom to locate
the acoustic source and receiver at arbitrary positions in the chamber. As a result, conventional
anechoic chamber design practices dictate that the walls be as absorptive as possible at all operating
frequencies and angles of incidence. This means that the walls are designed to have an absorption
coefficient as close as possible to unity (1.00), and thus act as a purely-resistive (non-reactive)
acoustic absorber load. Often the low-frequency cutoff of a chamber is defined at that frequency
where the absorption coefficient of the absorptive wedges falls to 0.99, ie, that lower frequency
where 1% of the incident energy is returned to the room [1] [3]. Another definition uses that
frequency where the pressure reflection coefficient equals 0.1 or 10% [4]

Effectively, the broadband near-unity absorption coefficient of the wall treatment, implies that
plane waves are assumed to hit the boundaries. This assumption fits, because it is only for
progressive plane waves that the specific acoustic impedance of air, Z, is purely real (this
impedance is the ratio of the acoustic pressure in a medium to the associated particle velocity, and

is equal to PoC for plane waves in air).

This is in contrast to the way that anechoic chambers are typically used, with acoustic sources
that generate spherical diverging waves. For plane standing waves, or for diverging waves, Z is in
general complex, ie, the acoustic pressure and particle velocity are not always in phase with each
other [5]. This is particularly true for low frequencies, and points close to the source with respect
to wavelength. This means that the chambers walls, rather than being purely resistive over the
whole operating frequency range, need to have a reactive component at low frequencies. The usual
justification for the design of conventional anechoic chambers, is that the walls are always many
wavelengths away from the effectively spherical-wave sources, and thus experience essentially
plane waves impinging on their surfaces. As will be shown, this is not true at low frequencies.

The acoustic performance of anechoic chambers is quite frequently evaluated by measuring
the deviations of mean-square sound pressure, from an assumed inverse square law, as a very-
small sound source and microphone are moved apart (the sound pressure should decrease by 6 dB
for each doubling of distance from a point source) [1] {6]. Maximum deviations of £0.5 dB from
inverse square law, for source to microphone distances ranging over 0.5 to 6 m, are considered
very good results.

This point source evaluation method, means that the most frequently used chamber evaluation
technique also uses a source that generates diverging spherical waves, rather than the previously
assumed plane waves. For diverging spherical waves, at distances from the source which are large
compared to the wavelength (the farfield), Z is essentially real. In contrast, at points close to the
source with respect to wavelength (the nearfield), Z is complex and mostly reactive, because the
particle velocity has a large component out of phase with the pressure.

At frequencies below 100 Hz, the walls of most reasonably sized anechoic chambers are on
the order of a wavelength or closer to the source, no matter where the source is placed. At 70 Hz in
the previously mentioned chamber, a centrally mounted source is only about 1.2, 0.8, and 0.7
wavelengths from each set of walls, respectively! This means that the chambers boundary
impedance needs to have a significant mass reactive component, at low frequencies, in addition to
the absorptive component. Unfortunately, because of the need to locate the acoustic source at
arbitrary positions in the chamber, points on the walls of a typical rectangular-shaped chamber can
also be at any arbitrary distance from the source, thus making a determination of the magnitude and
phase of the wall impedance nearly impossible to determine.
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This paper explores the idea of a spherical- or hemispherical-shaped anechoic chamber that
constrains the acoustic source to the center of the sphere (or hemisphere). This forces the walls of
the chamber to be at a fixed physical distance from the source, and thus simplifies the coordination
of the real and reactive parts of the wall impedance.

To eliminate wall reflections, the wall boundary mechanical impedance must match the the
specific acoustic impedance of the air immediately adjacent to the boundary, both in magnitude and
phase (or equivalently the real and imaginary components), at all frequencies. If this condition is
met, nearly perfect inverse square law pressure variation, with distance, will occur along a radial
line from the centrally-located source to the chamber's walls, at any arbitrarily low frequency! To
met this boundary condition at all frequencies, it will be shown that the wall must be mass reactive
and move, without absorbing, at low-frequencies, and be a rigid absorbing boundary at high
frequencies.

This paper does not present a valid completely-worked-out solution to the implementation of
this proposed chamber. It just presents the main ideas and some of the possible implementation
problems, so that the proposal will illicit comments and discussion by others that may bring insight
and possible solutions to the problems,

1. THEORY

In this section I show:

1) the equations that relate particle velocity and acoustic pressure for out-going harmonic
spherical waves,

2) derive the expression for the specific acoustic impedance for this situation,

3) calculate the pressure reflection coefficient for outgoing spherical wave impinging on a
perfectly-absorptive spherical boundary,

4) indicate the mechanical model for a boundary that perfectly matches the specific acoustic
impedance of a out-going spherical wave (thus eliminating reflections), and

5) for the proposed spherical-shaped chamber, derive some implementation dependent
relationships such as the total boundary mass required, mass per unit area of the boundary, and the
required material thickness at the boundary given mass material of different densities.

1.1. Harmonic Spherical Waves

An out-going diverging harmonic spherical wave, generated by a point source or pulsating
sphere, can be represented in complex form by (arrows over the variables emphasize their complex
nature):

-

p= A itk
r 1
where

:’z = complex pressure
A =acomplex constant
r = radial distance from center of coordinate system
@ = frequency in radians per sec (= 27f)
f = frequency in Hz
¢ =time



k = wave number (= w/c=—2/,L£f)

c = sound propagation velocity (=343 m/s = 1125 f/s)
A = wavelength
J = complex constant (= 4/—1).

The complex radial particle velocity, i, is then given by [5 p. 158]

Jjwpg )
where
Po = density of air (= 415 rayls).

Eq. (2) can be rewritten as

3)

Eq. (3) shows the well-known fact that in the far-field, for large distances and high

frequencies (K7 >>1), the particle velocity is in phase with the pressure. Conversely, in the

nearfield at small distances and low frequencies (kr <<1), the particle velocity lags the pressure
by 90° [5, p.158] [7, p. 346] [8, pp. 309-312].

1.2, Specific Acoustic Impedance

The specific acoustic impedance can be formed easily from Eq. (3) [9, Eq. 2.64, p. 36]
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The transition between nearfield and farfield operation occurs at kr =1, where the real and

imaginary parts of Eq. (4) are equal, with a magnitude of pOC/ V2 and phase of +45°, This
relation can be rewritten in various forms as follows:

r=i=0.1591 zi

2 6 and (5)
£
2r

54.6

f:

Fin meters

_ 179
Finfeet | ©®

Eq. (5) shows that the transition region occurs at the point whose distance is about one-sixth
wavelength from the source. Egs. (6) indicate, for example, that for a point that is about 2 m from
a point source, the transition occurs at about 27 Hz.

Note in passing, that the form of Eq. (4) is exactly the same as the steady-state sinusoidal
electrical input impedance of a resistor in parallel with an inductor (parallel LR cucult), or the
reciprocal of the input impedance of resistor in series with a capacitor (a series RC circuit, the dual
of the parallel LR circuit).

1.3. Pressure Reflection Coefficient

To evaluate the effectiveness of a chambers boundary, the complex pressure reflection
coefficient can be evaluated. This coefficient is given as follows, where it is borrowed from
transmission line theory [10, pp. 19 and 26] [11, where it was applied to the mismatch that occurs
at the mouth of a horn]. Note that a reflection coefficient of zero is the desired goal. Any non-zero
value indicates pressure reflections.

Lt4o, @
where
K p  =complex pressure reflection coefficient
Z 1, =complex acoustic load impedance
Zo = complex acoustic impedance of transmission media.

If a spherical-shaped anechoic chamber, of radius R, with a centrally located acoustic source
is assumed (Fig. 1), all boundary points on the chambers walls are equal (or approximately equal)
distances from the source. The reflection coefficient can be evaluated for this situation, and
indicates how well the boundary minimizes reflections.



The reflection coefficient can be evaluated for a perfectly absorptive boundary, by using a

load impedance equal to PyC at all frequencies (Z;, = PoC, purely real!), and the impedance of the
transmission media equal to the specific acoustic impedance of outgoing spherical waves, given by
Eq. 4, with the radius equal to the radius of the chamber, R. This situation mirrors the target
conditions for a conventional anechoic chamber where the goal is to completely absorb incident
plane waves, but evaluates the reflections for incident spherical waves. The reflection coefficient
for this situation is derived as follows:

PoC
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The absolute value of this expression may be taken

R =

V1 +4(kR)? ©



For small kR (kR << 1), this function is essentially equal to one ('I-{' pl =K p =1), which
means that all the pressure waves are reflected back to the source, just as if the wall were rigid and
non absorbing! For large kR (kR >>1), this function approaches zero and decreases inversely

with kR (l ) 4 P l =~ ﬁ), and means that out-going energy is mostly absorbed, rather than being

reflected.

Figs. 2 and 3 show plots of the absolute value of the reflection coefficient for the case of a
spherical chamber whose boundary is perfectly absorptive at all frequencies, Eq. (9), plotted on
linear and log scales respectively. Note that to absorb 90% of the energy or reflect back 10 %

(II? Pl =(.1), a kr of about 5 is required. This means that the walls must be beyond about 0.8
wavelengths from the source at the lowest frequency. A more stringent condition would be to

absorb 99% of the energy and reflect only 1% (II? ,,l =0.01). A very large kr of 50 is required
for this situation. This would require the walls to be about 10 times farther from the source (about

8 wavelengths), for the same low-frequency limit! Clearly a pure PyC boundary for the spherical
anechoic chamber is undesirable!

1.4. Boundary Mechanical Model to Match Air Impedance

The reflection coefficient may be minimized at all frequencies, by matching the boundary
mechanical impedance to the specific acoustic impedance of the outgoing spherical waves at the
chambers walls. This requires that the both the real and imaginary parts of the specific acoustic
impedance, considered separately, be matched at all frequencies. The specific acoustic impedance
at the chambers walls is given by Eq. (4), with the radius equal to the radius of the spherical
chamber, R. It is noted in passing that the required boundary impedance is identical to the radiation
impedance of a spherical source whose radius is equal to the radius of the chamber. For the
mechanical impedance of the wall to equal this value, the equivalent mechanical model for the load
must be determined.

1.4.1. Configuration of Mechanical Model

As Beranek shows, the equivalent analogous electrical circuit to the specific acoustic
impedance of Eq. (4) is an inductor in parallel with a resistor, shown in Fig. 4. [9, pp. 47-55, and
pp. 144-125]. This circuit follows his "Impedance” analogy, where the voltage and pressure, and
the current and particle velocity are analogous quantities.

As Beranek also shows, the analogous mechanical model is a damper (which provides
mechanical resistance) hooked to a free standing mass. This is shown in Fig. 5. This model
follows Beranek's Impedance analogy, where the voltage and force, and the current and velocity
are analogous quantities. ‘

In this situation, the force is applied to the damper, which in turn moves the mass. This
model intuitively fits the impedance function of Eq. (4), because at high-frequencies the force
required to move the mass far exceeds the force required to expand and compress the damper, thus
the mass stays essentially stationary, and all the power is absorbed by the damper, forming a real
load. At low frequencies, the force required to expand and compress the damper greatly exceeds
the foi'c:drequired to move the mass, thus the damper and mass move together and form a reactive
mass load.



One more item needs to be added to the model; a means for converting the acoustic pressure
of the sound wave into a force that in turn moves the mechanical assembly. This is a massless
plate, of area A, attached to the damper for the acoustic waves to impinge upon. This revised
model is shown in Fig. 6. Please realize that this is only a mechanical model for the wall
termination. The actual details of a specific implementation may be quite different.

1.4.2, Calculation of Mass

The only remaining item to calculate, is the required value of mass to properly match the airs
reactive component. This may be calculated by using Newtons law of motion that relates the force
applied to a mass and its resultant acceleration, but for periodic sinusoidal motion:

du
FT=mTa=mTE=1wmru

(10)
where
my  =total mechanical mass of spherical boundary
a =acceleration of boundary
u = velocity of boundary
Fy  =total force applied to boundary.
This equation can in turn be solved for mass yielding
R S
jou U an
For acoustical systems the force is equal to the the pressure times the area
Fr=pS; 12)
where
P = pressure
Sr  =area of boundary,
Substituting Eq. (12) into Eq. (11) yields
p S .
mp ===k
u o (13)

For low frequencies and points close to the source with respect to wavelength, the specific
acoustic impedance Eq. (4), evaluated at the boundary radius R, simplifies to

c c . .
= _Po_.__ = ____Po. = jpockR = jopoR
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When this expression for D/u is substituted into Eq. (13), and knowing that the area of the

sphere is Sy = 4 71R?, the following results
3
my =4nR°p, as)
This can be slightly rewritten in the form of

4
me =3 378,
. (16)

The quantity in brackets is recognized as being the mass of air contained within the spherical
chamber. Therefore the the required boundary mechanical mass is exactly three times the mass of
the air contained in the chamber! This last relationship is also pointed out by Skudrzyk in a
derivation based on the kinetic energy of the mass [7, pp. 350 and 353].

The mass per unit area (mass area density), of the spherical boundary, may be calculated by
dividing Eq. (15) by the area of the sphere (S, = 4 mR?) yielding

ms=”r;i=RPo
T .

an

This relationship shows that the mass area density rises in direct proportion to the radius of
the spherical boundary.
Given a specific material to form the boundary mass, the required thickness of the material

may be derived dividing the mass per unit area of the boundary, by the density, Py, of the
material used to form the mass:

i
Pu Pu (18)

This shows that the required thickness varies as the ratio of the density of air to the density of
the material, and increases in direct proportion to the boundary radius.

1.5. Implementation Issues

Considering only factors in implementing the moving mass, Table 1 shows various
parameters calculated for a range of chamber sizes spanning a radius range of 1 to 25 m in third
octave steps. These parameters include: sphere radius, sphere surface area, sphere volume, air
mass inside sphere, boundary moving mass, boundary moving mass per unit area, and the
required thickness for four representative materials used to form the mass, including glass wool
(50 kg/m3, approximate density of glass wool used to form wedges in a chamber), water (1,000
kg/m3), aluminum (2,700 kg/m3), and lead (11,300 kg/m3).



Somewhat surprising, are the small values of material thickness required for the moving
mass at the boundary. For example, a reasonable-sized spherical chamber of 3.15 m radius,
requires mass thicknesses of 76.2, 3.8, 1.4, and 0.34 mm, respectively for the four materials
(glass wool, water, aluminum, and lead).

Figure 7 shows a cross section of a chamber which utilizes the mechanical wall termination
model of Fig. 6 to form the boundary. In this depiction, the boundary has been divided up into 20
small mass-damper combinations. Obviously, this type of direct implementation is not very

tical.

pras A more practical implementation of the wall termination might consist of many freely
suspended chunks of fiberglass wool, that move pithout absorbing at low-frequencies, and absorb
without moving at high frequencies. A anechoic chamber, informally called an "Acoustic Jungle”
by its designer, constructed by Bruel and Kjaer, uses a technique similar to this (actually, B&K
has constructed several of these chambers in Denmark). The chamber, based on a technique
proposed by Dr. Eng. L. Cremer of the Technical University of Berlin, Germany, in the early
sixties, was made for reasons of ease of construction, low cost, and superior high-frequency
absorption [12] [13]. Apparently, it was not designed to deliberately match the acoustic impedance
of spherical waves, by being mass reactive at low frequencies and absorptive at high frequencies.

This chamber construction method lines the walls of the room with freely suspended cubes of
glass wool of different sizes and densities, with the larger cubes closest to the wall and the smaller
ones farther out. The cubes are attached to wires or strings freely hung from the ceiling. A rough
depiction of this method, but showing only two sizes of cubes, is shown in Fig. 8. In practice, the
cubes are hung in random positions and orientations, which is not shown in the figure. The basic
idea of the lining is that from an acoustical point of view, it represents a large irregular surface
which absorbs sound from many directions. Fig. 9 shows one of the B&K chambers designed and
constructed using these methods.

To the best of my knowledge, only two chambers in the United states have been constructed
using the hanging wads of glass wool technique: one at the R & D facilities of Harman-Motive
Inc., a loudspeaker manufacturer, installed by John King (now retired) [14], and the other at
company that prefers to stay anonomous [15]}. Chambers using this construction technique are said
to have improved low-frequency performance as compared to conventional chambers using the
wedge-attached-to-the-wall technique [16] (I was unable to find any hard evidence for this claim,
however. Refs 12 and 13 did not mention this.).

2. ACOUSTIC-FIELD SIMULATIONS

The original impetus for this paper started back in January 1978, when I was doing
simulations using a two-dimensional acoustic wave simulation program that I had developed, that
used electric network finite elements [16]. I had used the program to predict the steady-state
sinusoidal pressure magnitude and phase in a number of well known situations, where I thought I
knew what the answers would be. These situations included, among others, a straight duct, a
I-:lelmt})l:ltz resonator, an expansion chamber muffler, and standing waves in a reverberation
chamber.

Every simulation went as I expected until I got to the one where I attempted to simulate an
anechoic chamber, by analyzing wave propagation for a constant-pressure point source in a 90°
corner, with a pure resistive absorptive termination at its output. I fully expected decreasing sound
pressure the farther a point was from the source, at all frequencies. At mid and high frequencies,
everything went as expected. However, as frequency was lowered, the sound pressure distribution
approached that of a sealed chamber, ie the pressure was everywhere the same and equal to the
source, and did not decrease with distance from the source! After much thought, and reference to
my college acoustics texts, I finally figured out what was happening, The purely real termination
was not'a proper match to the impedance of the expanding wave, which I should have known all
the time!
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Figs. 10, 11, and 12 show the results of these original simulations run in 1978. The original
simulations were done using a time-shared computer system, in batch mode, with all output printed
on a Teletype in text. Here, I have created pressure contour plots from the original data, using the
math program Mathematica (this program was also used for the 3D depictions in Figs. 1 and 8). In
each plot, the constant pressure source is in the lower left corner of the square region. The
simulations used 13 square finite elements, each with four nodes (a total of 22 nodes with
connections), in a basic 4 x 4 array, with the three elements farthest from the source removed, Fig.
10. This formed an approximate circular boundary at a constant distance from the source. The left
and bottom walls (nodes) were unterminated, which represents a rigid boundary. The top and right
boundaries, were all terminated in a pure resistance, or a complex load, The program calculated the
pressure magnitude and phase at each node.

The simulation results for these two boundary conditions are shown in Figs. 11 and 12.
Frequency was varied so that the distance represented on the side of the 4 x 4 element square was
0.5, 0.05, and 0.005 wavelength respectively, going from high to low frequency (top to bottom in
the figures).

Figure 11 shows the pressure distribution results for the situation of a pure real load that
matches the characteristic impedance of the model. Note that at the highest frequency, the pressure
drops as you get farther from the source, as expected. However, as frequency is lowered, the
pressure distribution rather than rolling off with distance from the source, approaches a constant at
all points equal to the level of the source!

Figure 12 shows the results with the proper complex termination, that goes mass reactive at
low frequencies (this was a parallel LR circuit in the model). The pressure distributions roll off
with distance from the source, at all frequencies, as expected.

The distribution anomalies in the center of the top plot are due to errors generated by the
model, because the simulation is at the highest frequency where the model gives fairly accurate
results Eight elements per wavelength are required at the highest frequency. In these plots, the
node values for the missing elements, that are farthest from the pressure source, were extrapolated
so that the data set formed a square region for plotting purposes.

3. CONCLUSIONS

The answer to the question posed in the title of this paper: Anechoic Chamber Walls: Should
They be Resistive or Reactive at Low Frequencies? is yes! Even though conventional chambers are
designed to completely absorb plane waves at any angle of incidence, and at any frequency in their
bandwidth of operation, plane waves seldom impinge on the walls. Most typical sources used in
anechoic chambers generate spherical waves rather than plane waves. At low frequencies, where a
boundary is a small fraction of a wavelength away from the source, the boundary impedance needs
to have a significant mass reactive component in order to match the acoustic impedance of the
impinging spherical wave. This minimizes reflections.

Unfortunately, for a conventional rectangular chamber, where the source and receiver can be
at arbitrary locations, it is impossible to coordinate the desired complex boundary impedance
because the walls can be any arbitrary distance from the acoustic source. Conventional chamber
design practices, which dictate that the wall impedance be purely real and absorptive over the
whole operating range of the chamber, seem to work well in this situation.

This paper proposes a spherical or hemi-spherical shaped chamber, with source in the center,
that places the chambers walls at a constant distance from the source, and thus can be properly
coordinated for a complex wall impedance that matches the outgoing spherical waves.
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It was shown that the mechanical model of the proper wall termination is a massless plate, for
the waves to impinge upon, attached to a viscous damper connected to a freely suspended mass. At
high frequencies, where the walls are in the farfield of the source, most of the incident energy is
absorbed in the damper because the mass essentially does not move. At low frequencies, where the
chamber's walls are in the nearfield of the source, the whole assembly moves and therefor presents
a non-absorptive mass-reactive impedance to the wave. This termination properly matches the wall
impedance to the acoustic impedance of the diverging spherical waves, thus minimizing reflections
at all frequencies. Theoretically the chamber should operate down to any arbitrarily low frequency,
assuming the mass-damper assemblies can oscillate over a large enough amplitude.

Several parameters for the moving-mass termination model were derived, including total
mass required (which ended up being equal to three times the mass of the air contained in the
sphere), mass per unit area, and the required thickness of material to form the mass. A table giving
these parameters for a range of chamber radii was presented, along with the required thickness of
several different types of material.

An existing chamber construction method, that uses hunks of different sized glass wool
freely suspended by string or wire from the chamber's ceiling, was shown to be a possible
solution to the implementation of the boundary model. At high frequencies, the hunks of glass
wool are mostly stationary and thus are good absorbers. At low frequencies, the glass wool hunks
move with the incoming wave pressure variations, and thus present a mass reactance with low
absorption,

Unfortunately, a practical implementation of the scheme has not yet been determined.
Suggestions, observations, and ideas to produce a workable implementation, are welcome,
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TABLE 1., CHAMBER MASS PARAMETERS
SPHERE | SPHERE | SPHERE | AIR MASS | BOUNDARY | BOUNDARY MATERIAL THICKNESS
RADIUS | SURFACE | VOLUME INSIDE MOVING MASS per WATER| ALUM. | LEAD
AREA SPHERE MASS UNIT AREA
m $q. m cu. m kg. kg. kg./cu. m mm mm mm mm
1 12.8] 42| 541 162 1.21] 2420 121 045 0.11
1.25 19.6 8.2 9.9 29.7 1.51] 30.25 1.51 0.56 0.13
1.6 322 17.2 20.8 62.3 1.94] 3872 1.94 0.72 017
2 50.3 33.5 40.5 121.6 2.42]  48.40 242 0.90 0.21
25 785 65.4 79.2 237.6 3.02[  60.50 3.03 112 0.27
3.15 1247 130.9 158.4 475.3 381 76.23 3.81 1.41 0.34
4 2011 268.1 324.4 973.1 4.84]  96.80 4.84 179 0.43
5 314.2 523.6 633.6 1900.7 6.05] 121.00 6.05 224 0.54
6.3 498.8 1047.4 1267.3 3802.0 7.62] 152.46 7.62 2.82 0.67
8 804.2 21447 2595.0 7785.1 9.68] 193.60 9.68 3.59 0.86
10 1256.6 4188.8 5068.4 15206.3 1210 242.00] 1210 4.48 1.07
125 1963.5 8181.2 9899.3 29697.9 15.12| 302.50] 15.13 5.60 1.34
16 3217.0[__ 17157.3 20760.3] __  62280.9] __ 19.36] 387.20] 19.36] _ 717, _ 1.71
20 5026.5 33510.3 40547.5 121642.5 24.20| 484.00] 24.20 8.96 2.14
25 7854.0 65449.8 79194.3 237582.9 30.25] 605.00{ 3025 11.20 2.68

Table 1. Various parameters for the optimum boundary termination for a spherical anechoic

chamber, are calculated for a range of chamber sizes spanning a radius range of 1 to 25 m in third
octave steps. These parameters include: sphere radius, sphere surface area, sphere volume, air
mass inside sphere, boundary moving mass, boundary moving mass per unit area, and the
required thickness for four representative materials used to form the mass, including glass wool
(50 kg/m3, approximate density of glass wool used to form wedges in a chamber), water (1,000
kg/m3), aluminum (2,700 kg/m3), and lead (11,300 kg/m3).



Fig. 1. Depiction of a spherical-shaped anechoic chamber, with the sound source mounted in
center. This style chamber places all the chamber's boundary surfaces at a constant distance from
the source. This allows coordination of the boundary's mechanical impedance to properly match
the acoustic impedance of the outgoing spherical waves, thus eliminating reflections. The
boundary's walls should move without absorbing at low frequencies (where the walls are close to
the source with respect to wavelength), and absorb without moving at high frequencies (where the
walls are far from the source with respect to wavelength). This theoretically allows perfect inverse-
square roll off of pressure down to any arbitrary low frequency.
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Fig. 2. Plot of the absolute value of the pressure reflection coefficient as a function of kR, Eq. (9),
for the situation of a completely-absorptive resistive boundary, at all frequencies, on the inside
surface of the spherical anechoic chamber shown in Fig. 1, plotted on linear scales. Note that at
low-frequencies, where the boundary is close to the source with respect to wavelength (kR << 1),
the pressure waves are completely reflected from the boundary. At high frequencies, where the
boundary is far from the source with respect to wavelength (kR >> 1), most sound is absorbed.
The reflections at low frequencies are due to the mismatch between the out-going spherical wave's
acoustic impedance, and the terminating mechanical impedance of the walls.
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Fig, 3. Plot of the pressure reflection coefficient data of Fig. 2, but plotted on log-log scales. See
Fig. 2 caption.



Fig. 4. Equivalent analogous electrical circuit for the specific acoustic impedance function of Eq.
(4). This parallel inductor-resistor equivalent circuit has the same form of electrical input
impedance as the acoustic impedance of an outgoing spherical wave. In this circuit model, the
electrical voltage and acoustical pressure, and the current and particle velocity are analogous
quantities. Note that at high frequencies (w >> L/R analogous to k» >> 1) the circuit is resistive,
and for low frequencies (w << L/R analogous to kr << 1) the circuit's impedance is very low and
reactive.



FORCE €<—> MASS

DAMPER

Fig. 5. Equivalent analogous mechanical model for the specific acoustic impedance function of Eq.
(4) or the electric network of Fig. 4. The model is a force applied to a viscous damper, which
provides mechanical resistance, which in turn is hooked to a free standing mass. At high
frequencies, the mass, due to inertia, is unmoving and all the energy is absorbed in the damper. At
low frequencies, the force required to compress and expand the damper far exceeds the force
required to move the mass, thus the whole assembly moves without absorbing, and presents a low
reactive mechanical impedance (force divided by velocity) to the source.

PRESSURE
< > MASS
DAMPER
MASSLESS
PLATE

Fig. 6 Equivalent analogous mechanical model for the specific acoustic impedance function of Eq.
(4), but with a massless plate added so that the pressure of the impinging acoustical waves will
translate to a force on the damper. This is the mechanical model of the proper boundary termination
for the spherical anechoic chamber of Fig. 1, that properly matches the acoustic impedance of the
outgoing spherical waves.
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Fig. 7 Cross section of the spherical anechoic chamber of Fig. 1, showing how 20 small
mechanical mass-damper models of Fig. 6 might be used to form the correct wall termination
mechanical impedance.



Fig. 8 Depiction of an idealized rectangular anechoic chamber that uses freely hanging cubes of
glass wool to absorb sound, called an "Acoustic Jungle." In practice, many more cubes would be
used, of differing sizes and wool density, placed at random locations and orientations. The larger
cubes would be hung closer to the wall. Although this lining method was not specifically designed
to absorb low frequencies by moving rather than absorbing, as suggested in this paper, it may
work better at low frequencies as well.



Fig. 9 A practical application of Fig. 8, an anechoic chamber using the "Acoustic Jungle" method
of freely-hanging wads of glass wool to absorb sound (courtesy of Bruel & Kjaer).
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Fig. 10 Depiction of a 2D finite-element model used to simulate free-space propagation of sound in
a 90° corner, with anechoic terminations on the other end. A constant-pressure sound source is
located at the apex of the rigid side walls at the lower left of the diagram. An absorptive (resistive)
or complex absorptive/reactive termination is applied to the nodes along the boundary farthest from
the source (nodes closest to the circle). In this model, the theoretical wavefronts are circles
diverging from the corner source. A proper boundary termination will absorb outgoing waves and
thus exhibit inverse rolloff of pressure the farther from the source. The model is composed of 14
side-by-side square elements, with 22 nodes where the sound pressure is calculated.



RESISTIVE BOUNDARY
IMPEDANCE

(a)

MEDIUM FREQUENCY
Side = 0.5 Wavelength

(b)

LOW FREQUENCY
Side = 0.05 Wavelength

(c)

VERY LOW FREQUENCY
Side = 0.005 Wavelength

Fig. 11, Pressure contour distribution plots for the model of Fig. 10, for a pure real termination
along the outside boundary. (a) Mid frequency where the side walls are 0.5 wavelength long. (b)
Low frequency where the sidewalls are 0.05 wavelength long. (c) Very low frequency where the
sidewalls are 0.005 wavelength long. There is approximately 12 dB variation between lightest and
darkest areas of the plots. Note that as the frequency is lowered, the pressure distribution reaches a
constant equal-to-the-source level at all points, rather than decreasing the farther from the source!



COMPLEX BOUNDARY
IMPEDANCE

(a)

MEDIUM FREQUENCY
Side = 0.5 Wavelength

(b)

LOW FREQUENCY
Side = 0.05 Wavelength

(c)

VERY LOW FREQUENCY
Side = 0.005 Wavelength

Fig. 12,Pressure contour distribution plots for the model of Fig. 10, for a boundary termination
that is mass reactive at low frequencies, and absorptive at high frequencies. (a) Mid frequency
where the side walls are 0.5 wavelength long. (b) Low frequency where the sidewalls are 0.05
wavelength long. (c) Very low frequency where the sidewalls are 0.005 wavelength long. Note
that as the frequency is lowered, the pressure distribution always decreases with distance from the
source, even at the lowest frequency.



