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Time-Frequency Display of Electro-
Acoustic Data Using Cycle-Octave

Wavelet Transforms
D. B. (DON) KEELE, JR.

DBKAssociates,Elkhart,IN46517,USA
AudioMagazine,llachetteFilipacchiMagazines,btc.,NewYork,NY10019,USA

A cycle-octave limc-fnxtuency display is created by plotting thc magnitude of the
warder trattffortn, using a Morlct complex Gaussiml wavelet, on a log-frequency scale
versustimeitl numberof cyclesof thewavelet'scenterfrequency,Thistypeof displayis
quitewell suitedfor plottingthe decay responseof wide-braidsystems,such as tile
impulseresponseofa loudspeaker,becausethctimescaleis longat Iowfrcqucalcicsmid
shortat highfrequencies.If dieresponseof typicalfiltersarc ploUedon thisdisplay,the
rcsult_a_t"3d)"responsesarc independentof thefilter'scenterfrequency,i,e. the decay
responseshapeof a particularfilterremainsthe s,'aneas it's centerfrequencyis slfifiedup
tutddownin log frcv4acncl,'.

0. INTRODUCTION

Electro-acoustic data such as the impulse response of loudspeakers and rooms, are often
displayed using three-dimensional graphs of amplitude versus time and frequency [11 [21 J31.
These "3-D" displays are more informative than the usual "2-D" displays of magnitude and phase
versus frequency, or amplitude versus time such as impulse response or energy time response
(El'C). The "3-D_'display kx_sely shows the time reslxmse of the system at each frequency or
alternately the frequency response of the system at each time. The term loosely is used, because all
time-frequency displays suffer from the effects of the uncertainty principle, which states you can't
get arbitrarily precise in one domain without simultaneously getting less precise in the other, the
product of the two being a cons 'taut.

As currently implemented, most "3-D" displays suffer from three disadvantages when
applied to wide-bandwidth electro-acoustic da'la such as the impulse restxmse of loudspeakers.
These include: 1. problems of subjective interpretation of the "3-D" display, 2. a frequency
resolution or bandwidth not matched to the wide-bandwidth data, and 3. a constant display time
scale which is too long at high frequencies to properly display short-lived high-frequency effects
and too short at low frequencies m display long4ived low-frequency effects. These disadvantages
arc described as follows.

0.1. Hard to Interpret Display

Orte of the major disadvantages of all types of "3-D" displays, is the problem of subjective
interpretation of the displayed da 'ta. Before a time-frequency display can bc created, the resolution
in one domain or the other must be chosen (thc resolution in the other domain is then set through
the uncertainty relationships). This is usually done by selecting such parameters as time window
size or frequency bandwidth when the graph is generated. These resolution choices have a major
impact on the appearance of the graph, and must be known heft)re the graph can be properly
interpreted.



Resolution parameters based on human hearing attributes, such as critical bandwidths, would
aid interpretation of "3-D" graphs. One-third- or one-sixth octave bandwidth resolutions would
more closely matched human hearing characteristics.

0.2. Mismatched Frequency Resoldtion
Another disadvantage of "3-D" graphs as usually implemented, is that the frequency

resolution is constant and independent of frequency. This automatically makes it unsuitable for
wide-bandwidth systems such as loudspeaker responses which may cover a 1000 to I range in
fi'equency (20 Hz to 20 kHz), and whose frequency responses are usually plotted on logarithmic
frequency scales. Constant frequency resolution works well for data plotted on linear-frequency
scales, but not for data plotted on log frequency scales. If the resolution is chosen to match the data
at higher frequencies, the low-frequency data will be smeared or smoothed in frequency when
plotted on a log frequency scale.

What is needed is a frequency resolution (or bandwidth) that is small at low frequencies and
large at high frequencies, i.e., a "constant-Q" resolution that is a constant percentage of the
analysis' center frequency, rather than a constant resolution independent of frequency. This would
match the analysis bandwidth to the data over the whole frequency band.

0.3. Mismatched Time Scale

The time scale of typical "3-D" displays is almost always fixed at a constant value
independent of frequency, and is usually chosen to match mid- and high-frequency effects. For
loudspeaker impulse data, time scales of 2 to l0 ms .are common. Becaum loudspeaker low-
lYequency impulse behavior is ahvays longer than these short time _ales, the behavior of the
loudspeaker at low frequencies is severely truncated by the display and as a result is not shown. '

A time scale is desirable that is short at high frequencies and long at low frequencies, i.e. a
time scale inversely proportional to frequency so that the time scale represents a constant number of
cycles of the indicated frequency. This is an optimal match to real-world constant-Q physical
processes which inherently ring down quicker at high frequencies than low frequencies.

0.4. Wavelets To The Rescue

Wavelct theory provides a rich set of ttx)ls for analyzing wideband systems and signals. The
wavelet transform inherently provides capability for analyzing data that covers a wide fiequency
range because the analysis allows signals to be broken down into different frequency ranges, and
then studies each range with a resolution matched to its scale. A high-frequency component is
studied with a short-time analysis window, while a low-frequency component is studied with a
long analysis window.

This paper describes an application of Morlet's cycle-octave transform [41 (called here a
cycle-octave wavelet transform) to the time-frequency display of electro-acoustic impulse data.
Morlet's cycle-octave wavelet transform uses a complex Gaussian as thc mother wavelet. When the
magnitude of the transform is plotted on a three-dimensional display of log frequency versus time
in number of cycles of the wavelet's center fundamental (as Morlet specifies), the resultant display
is very well-matched to wideband systems.

1. OFTEN-USED TIME-FREQUENCY DISPLAYS

Two different types of "3-D" time-frequency displays are commonly used to display thc
impulse response of loudspeakers and electro-acoustic systems: the windowed or short-time
Ftmrier transform [5], and the cumulative spectral decay plot [1][2] [3].
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1.1. Windowed or Short-Time Fourier Transform

The standard Fourier transform,

F(a,) = l-_ff(t)e-J'_'dt ill_12_

where

F(to) = Fourier transform of f(t), a complex function of frequency

f(t) = signal to be transformed, a function of time

j_ = -1,

is time blind. It gives the frequency content or spectrum of the signal considering it as a whole, and
yields no information about when certain frequencies occur.

Time localization can be achieved by first windowing the signal f(t), so that a well-localized

piece of f(t) is transformexl into the frequency domain. This is called the windowed or short4ime
Fourier translbrm 151:

F(a_,_) =f f(t )g(t- ,)e-J°'tdt, [21

where

F(to,,) = short-time Fourier transform of f(t), a complex function of frequency
and time

g(t) = window function (a smooth and localized Iow-pass function),

which is a standard technique for gaining time-frequency localiTation. The window is shifted down
the time record, and successive Fourier transforms are taken at each time point. Note that the

window function g(t) has a cons'tant time width and does not depend on frequency, i.e., its width
at high frequencies is the same as it is at low frequencies.

When the windowed Fourier transform is applied to wideband data, such as audio or acoustic
information that often covers three decades (20 Hz to 20 kHz) or more and is usually plotted on
logarithmic frequency scales, it is ill suited because the window is of fixed size in both time and
frequency. If the window is chosen to be of proper size so that its frequency bandwidth in the
center of the frequency range is correct (say one-third octave), the window will be to narrow at
high frequencies and to wide at low frequencies. If plotted on log frequency scales, the data will
appear much to smoothed and spread out at low frequencies, while simultaneously having to much
detail at high frequencies. As usually plotted with a constant time scale, long low-frequency ring
downs will be truncated.

1.2. Cumulative Spectral Decay

The cumulative spectral decay is a special form of the windowed Fourier transform applied
specifically to impulse responses, where the window is a step function [2], [3] or a smoothed step
function:

C(o,,_) =fh(t )U(t - _)e-;_' dt [3l

where
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C(w,_) = cumulative spectral decay of h(t), a complex function of frequcncy
and time

U(tl = unit step function
h(t) = impulse response of system.

As _ increases, less and less of thc start of the impulse response is convertcd to thc
frequency domain. At large delays, only thc tail of the impulse response is converted to thc
tYequency domain. Note that when _ = 0, thc cumulative spectral decay is equal (within a cons'rant)
to the Fouricr transform of the impulse rcs[xmse (the steady-s'tate frequency response)
C(w,O) = _ F(w). Effivctively, the cumulative spectral decay can bc interpreted as a windowed
Fourier transform of the impulse response, with a time dependent window that is very wide at Iow
delays and shortens as delay increases.

Thc cumulative spectral decay suffers from somc of thc same problems as the windowed
Fourier transform. Typically, thc cumulativc spectral decay data is plotted with a logarithmic
frequency scale .and a constant time scale in the range of 2 to 10 ms. As with thc windowed Fouricr
transform, long low-frequency ring downs will be truncated duc to thc constant time scale.

2. WAVELET TRANSFORMS

The wavelet transform provides a very-powerful time-frequency expansion that is very well
matched to the response of wi&band systems. It inherently provides wide-bandwidth narrow timc
windows at high frequencies, and narrow-bandwidth wide time windows at low frequencies. The
transform thus provides optimum.time-frequency loeali>,ationover very wide frequency ranges.

The term "wavelet" was first popularized by Morlet et al. in a series of papers, in the early
80's, which described application to geophysical exploration [41 [6] [7]. Although wavelet theory
and research has only been around for little over a decade, the techniques tie together research in
many different and diverse disciplines including engineering, physics, and pure and applied
mathematics, that goes back over 35 years.

2.1. Continuous Wavelet Transform

The wavelet transform decomposes a time signal into a set of bandpass functions (an
oscillatory function with zero average value) called "wavelets," which are time scaled and shifted
versions of a "mother wavelet" _p(t). The continuous wavelet transform is given by 18] |91 (the bar
indicates complex conjugation),

where

W(a, _v) = wavelet transform of f(t), either real or complex
_p(t) = mother wavelet, either real or complex
a = scale value or dilation parameter (effectively sets frequency of wavelet),

a > I corresponds to scaling up (widening) the mother wavelet, and a < 1
corresponds to scaling down (narrowing) the wavelet

ir = timeshiftor delay.

It is assumed that _ (t) satisfies the admissibility condition
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f _,(t)dt=o, 151

i.e., the mother wavelet must have an average value of zero or equivalently a DC value of zero.
As Daubechies observes (with appropriate changes in variables to agree with those in this

paper) I9, p. 31;
"Ilia difference between file wavelet and windowed Fourier transforms lies itl thc

shapes of Ihe analyzing functions g(¢o,T)= g(t- 'g')g-J_' and lp (a, 'r) = lp _ .

'the llJnctions g (Io,'r) all consist of the same envelope fimction g. translated to the proper

thne location, and "filled in" with higher frequency oscillations. All the g(o), T), regardless

of it;.. have the s.-unewidth. In contrast, the Ip (a, 'r) have time-widths adapted to their

frequency:highfrequency ¥' (a, T) are very narrow, while Iow frequency _._¢, _') ,aremuch
broader. As a result, the wavelet transform is better able thml filewindowed Fourier transform
to "zoomitl" on very short4ived high-frequency phenomena, such as transients in signals."

2.2. Equivalence of Wavelet Transform and Tone Burst
Response

As an aid to undcrs 'landing the wavelet transform as a tool for analyzing systems, this section
shows the equivalence between the wavelet transform of a systems impulse response and the tone
burst response of a system, where a time-reversed version of the wavelet is used as the tone-burst
excitation signal.

The conw_lution of two functions fl (t) and f2 (t) is given by [10, p. 80].

f(t) = f_(t)* A(t)=f f_(r)A(t- .)dr. 161

Convolution allows the output fo_(t)of a time-invariant linear system Ix)be calculated given

the impulse response of the system h(t) and the input fl.(t): fo.t(t) = fl.(t)* h(t).

Assuming a real mother wavelet and substituting t _ Tand. = t', the wavelet transform Eq.
(4) can be written as,

w(.,t'] =14-''_ ar

_ ,_-t,2r_t_m,,[_t'-B,rr

t' t'_
=[4-"_f(t')* V_-a) [7!

Equation (7) shows that the wavelet transform is equivalent to convolving the input time
function with a scaled and time reversed version of the mother wavelet. Likewise, the wavelet

transform of a system with impulse response h(t) is given by,

(¢W(a,t) = la[rah(t) * _p - . 181
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This shows that the wavelet transform of a system's impulse response is equivalent to a
family of tone-burst responses of the system, where the time-reversed wavelet acts as the tone-
burst excitation signal !

2.3. Cycle-Octave Transform
Morlet describes a variation of the standard wavelet transform he calls the cycle-octave

transform [4] [6]. Here he changes to a octave-based (base 2) logarithmic scale in the dilation

parameter by substituting a = 2_ (where u is not necessarily an integer), and changes the time shift
variable v into a "rescalcd time shift" v = v[a, which corresponds to measuring time in terms of
"local cycles" (his terms). With these two changes, the wavelet translorm of Eq. (4) appears as,

W(u,v) = 2-_af f(t )_, (2-_t- v)dt. [9]

The rescaled time shift parameter v essentially changes the time scale into one that is
normalized to the time width of the scaled mother wavelet ?. Essentially this makes the time scale
short at high frequencies and long at low frequencies. Displaying time-frequency data on a sliding
time scale of cycles of the fundamental rather than a constant time scale is not original with Morlet,
Suzuki et al. earlier suggests its use for displaying "3-D" tone burst responses of loudspeakers [3,
1978]. In 1979 Fryer and Millwcxxl described a measurement system which plotted the data in this
way [11].

Equivalently, the modifications effected by these two Changes can be accomplished by a
simple display post-processing operation using the standard wavelet transform Eq. (4). This can be
done by changing from a linear to a log scale for the dilation parameter (equivalently a log
frequency scale), and changing the time scale so that it expands and contracts appropriately so that
a cons'rantnumber of cycles of the wavelets center frequency is displayed on the time axis.

Morlet further specifies the use of a Gaussian-windowed complex exponential (sine/cosine)
as the mother wavelet,

_0(t) = e-t't_eJ2"t= e -t't_(cos2_ t + jsin 2_ t). [10]

The Gaussian wavelet has an optimum time-bandwidth prcx:luct,and has the same characteristics in
the time and frequency domains.

Eq. (10) specifies a one Hz sine/cosine wave windowed by a variable-width Gaussian
window (Morlet actually suggested the reverse, a fixed width window with a variable center
frequency). The parameter bsets the width of the window and hence the number of cycles in the
main part of the wavelet, which directly effects the bandwidth of the wavelet in the frequency
domain. Small b yields a wide window with a narrow frequency bandwidth, while large b yields a
narrow window with a wide bandwidth. As Morlet points out, this form of Gaussian wavelet does
not meet the admissibility constraint of Eq. (5) (zero average value), but effectively does so for
commonly used small b. (b < 1approximately)

If the frequency bandwidth of the mother wavelet is specified in fractions of an octave, i.e.,
N = 1 for an octave, N = 6 for one-sixth octave, etc., the parameter b is given by (without proof),

Figure I shows the Gaussian mother wavelet of Eq. (10), along with envelope for a one-sixth
octave bandwidth (N = 6, b ,_ 0.8229).
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3. PRACTICAL IMPLEMENTATION

Rather than directly implementing the wavelet transform equations of Eq. (4) or (9) and
numerically calculating the integrals that generate the time-frequency display, an alternate more
straightforward method based on FFF (Fast Fourier Transform) techniques is presented in this
section. The method starts with a very wide bandwidth log-spaced frequency response data array,
and then calculates the individual time response envelopes by manipulating smaller linear-spaced
data arrays in the frequency domain and then converting them to the time domain. The "per cycle"
time scale normalization is accomplished automatically.

Measurements of audio systems frequently yield sets of frequency response data that cover
extremely wide frequency ranges. Loudspeaker measurements often cover a 3.5 decade frequency
range extending from 10 Hz to 30 kHz or wider. Storing and manipulating log-spaced data offers a
considerable increase in computational efficiency due to the major reduction in the number of
sample points required [12]. Often data originates from me,asurcment,s taken directly in the
frequency domain at log-spaced sample points.

If only linear-spaced frequency-domain data is available (as is generated from such
measurement systems based on techniques such as impulse FFT, MLS (Maximal Length
Sequence, or TDS (Time Delay Spectrometry, a wide band log-spaced data set can be created by
combining through interpolation two or more restricted bandwidth linear-spaced responses, For
example: a high-resolution 20 Hz to 20 kHz log-spaced spectrum can be created by combining
three linear-spaced frequency responses coveting individually 0 to 200 Hz, 0 to 2 kHz, and 0 to 20
kHz.

3.1. The Method

The method emphasizes operations in the frequency domain rather than the time domain. The
meth_xi starts with a wide-bandwidth logarithmically sampled (rather than a linear _mpled)
magnitude-phase response in the frequency domain. It then calculates the time response of the

.system at discrete log-spaced frequency points (usually at one-third- or two-third-octave intervals)
by multiplying spectrums in the frequency domain and then converting back to the time domain
using the FFT. The time envelope (magnitude) is then 'calculated from the complex time data.

3.2. The Procedure
The following steps outline a practical procedure to create a "3-D" time-frequency display

based on the cycle-octave wavelet transform. Implementation details and suggested data structure
sizes have been added for clarity.

1. Create a very-wide bandwidth log-sampled frequency response.
Form a very-wide bandwidth log-sampled complex (magnitude-phase) frequency response

with a point density (sample points per decade) high enough to properly capture the details of the
response. Refer to [12, Eq. (29) or Fig. 13] to determine the proper point density for a specific
maximum Q and dynamic range.

A very-wide bandwidth log-spaced working data record must be created covering at least 2
octaves above and below the desired frequency range. Assuming a "3-D" display covering
approximately 20 Hz to 20 kHz, this means a working record of at least 5 Hz .to 80 kHz. A record
covering 5 decades from 1 Hz to 100 kHz is suggested. A sample point density of lk points per
decade is further suggested, which provides for maximum resonant Q's of about 80 for a display
dynamic range of 60 dB. The resultant working record is thus 5k points.

2. Calculate spectrum of Gaussian wavelet.
Using a linear-spaced complex data record of 1024 or 2048 points, scaled to -2.56 fo to

+2.56 fo (where fo is the center frequency of the scaled wavelet), calculate the spectrum of the
Gaussian wavelet (suggest a one-sixth- or one-third-octave bandwidth wavele0.
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Force the spectrum tx)be causal by zeroing out the negative frequency data, and doubling the
positive frequency data. The wavelets spectrum is causalized so that when multiplied by the data
spectrum and convened back to the time domain, the envelope of the time response can be easily
calculated from the complex time data. Cau,_lizing the spectrum and then converting back to thc
time domain, creates a 90° phase shifted imaginary time response (the sine data), via the Hilbert
transform, that can be combined with thc real response (the cosine data), to yield the magnitude or
envelope time reslxmse.

Note that the spectrum of the wavelet need be calculated only once k_r each "3-D" plot. The
spectrum changes that occur from one frequency band to the otber arc accomplished by just
changing the frequency scale of the data.

3. Create linear-sampled frequency response slice.
Starting from the log-sampled complex frequency response of step 1, create (intertx_late) a

linear-spaced complex data record of size equal to the record of step 2 with thc same scaling of
-2.56 fo to +2.56 fo. Note that only thc positive half of the data record need be filled with data duc
to subsequent multiplicatkm with the causalized wavelet spectrum.

4. Multiply frequency response slice by spectrum of wavelet.
Create a complex output data record the same size and scaling as the records of steps 2 and 3.

Fill the record with the complex product of the of the frequency resFxmse slice of step 3 multiplied
by the wavelet spectrum of step 2.

5. Convert data to time domain
Using a complex-to-complex inverse FFF, convert the data record of step 4 to the time

domain.
6. Calculate envelope of time response
Calculate the envelope (magnitude) of the complex time data calculated in step 5, by

computing the square root of the sum of squares of the real and imaginary parts of the time data.
Convert data to dB (20Log(Magnitude)) if necessary.

7. Repeat steps 3 to 6 at all the desired analysis frequencies
A "3-D" plot coveting 20 Hz to 20 kHz with a one-sixth octave bandwidth analysis, stepping

every one-sixth octave, would require 61 iterations of steps 3 to 6. All the resultant time envelopes
can be displayed side by side, in tx_intby [x_intsynchronix,ation, to create the "3-D" time-frequency
display. NOTE!! The required "per cycle" time normalization of Sec. 2.3 and Eq. (9) is
automaticallyaccomplishedby the outlined pr(xzess.The time scale automatically is short at high
frequencies and long at low frequencies so as to display a constant number of cycles of the
wavelets center frequency. This is due to the changing frequency scale from band to band of the
data record in steps 2 and 3.

4. APPLICATION

This section illustrates several examples of the use of the cycle-octave wavelet transform. The
transform is first applied to several simulated loudspeaker system res[xmses illustrating systems
from a perfect loudspeaker, to a bandpass system containing several high-Q resonances. Secondly,
the transform is applied to measurements of an actual loudspeaker. In each situation, thc magnitude
and phase of the system's frequency response is shown first, and then two forms of the time-
frequency display using the cycle-octave wavelet transform: a standard side-view "3-D" elevation
view, and a "2-D" contour diagram with contour lines at 10 dB intervals.
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4.1. Simulations

Several loudspeaker system responses are simulated in this section: l. a perfect system with
infinite bandwidth and zero phase, 2. a bandpass minimum-phase system, 3. a delayed bandpass
system, and 4. a minimum-phase bandpass system containing Ii)ur identical high-Q resonances
equally distributed in log frequency. A typical loudspeaker reference level of 90 dB (one-watt/one-
mc(er) sound pressure level (SPL) is assumed in 'all the simulations, 'along with a 20 Hz to 20 kHz
log frequency range.

Each time-frequency plot covers an approximate range of 10 to 90 dB SPL, an 80 dB
dynamic range. Each time-frequency plot was generated using the proccxture of Sec. 3.2 with a
onc-sixth-octave bandwidth mother wavelet whose time envelope extends down to 90 dB
(truncated before and after with a width of 20.87 cycles, see Fig. 1), and the time response was
calculated every (me-sixth octave (61 bands between 20 Hz to 20 kHz). FFF's were calculated
using a 10",.4point data record which was interpolated to a 64 point data record to output the time
response, A wide-bandwidth log-spaced working data array was used which covered a six-decade
range t¥om 0.1 Hz to 100kHz with 800 points/decade (4800 points).

4.1.1. Perfect System
A system with flat frequency and phase response between 5 Hz and 80 kHz with a sensitivity

of 90 dB was simulated. The magnitude and phase responses of this system arc shown in Fig. 2.
The resultant time-frequency responses are shown in Fig. 3.

Thc time-frequency response (Fig. 3) just traces out the time envelope shape of thc wavelet at
each frequency, no additional ring-downs are evident.

4.1.2. Band-pass System
A minimum-phase bandpass system response between 40 Hz and l0 kHz (-3 dB), with

sixth-order Butte(worth high- and low-pass filters was simulated. The magnitude and phase
responses of this system arc shown in Fig. 4. Thc resultant timc-frequehcy responses arc shown in
Fig. 5.

Note very slight widening of response at thc bandpass corner frequencies (40 Hz and 10
kHz) due to the slight additional ringdown of thc sixth-order high- and low-pass filtem.

4.1.3. Band-pass System With Delay
A non-minimum phase system composed of the minimum-phase bandpass system of Section

4.1.2 in cascade with a pure delay of 1.25 ms. This amount of delay corresponds to 25 cycles at
20 kHz. The magnitude and phase responses of this system are shown in Fig. 6. The resultant
time-frequency responses are shown in Fig. 7.

The delay skews the timc-frequcncy plots towards later times at high frequencies. The delay
skew is not a straight linc due m the logarithmic frequency scale and the per-cycle time display.
The low-level energy betwcen 5 and 15 kHz and 35 and 100 cycles is spurious, and is due to
numeric erro_ because of undcrmmpling the rapidly changing phase at high frequencies.

4.1.4. Peaky Band-pass System
A minimum-phase bandpass system of Section 4.1.2 in cascade with four 8-dB Q=10

second-order peak filters at 40, 250, 1600, and ltX)00Hz. These peak filters add significant ring-
down at their center frequencies. The magnitude and phase responses of this system are shown in
Fig. 8. Thc resultant time-frequency responses are shown in Fig. 9.

Note the close similarity of the ring-down tails in the time-frequency response. This time-
frequency responses shows that thc cycle-octave wavelet time-frequency display is frequency
invariant when constant-Q systems are shifted up and down in frequency.
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4.2. Live Loudspeaker Measurements
Axial frequency response measurements (2.83 V rms at one meter on axis) were taken oil a

two-way floor-standing, bipolar, vented-box speaker system with crossover at 1.5 kHz. The
system has all 8-in. cone woofer and a 1-in. dome tweeter on the front and back of the system. The
magnitude and phase responses of this speaker system are shown ill Fig. 10. The resultant time-
frequency responses are shown in Fig. 11.

Note the complex time-frequency response with long ring-down tails that extended out in
time. Major delayed responses occur in the vicinity of the crossover (1.5 kHz) and at high
h'equencies.

5. CONCLUSIONS

The cycle-octave wavelet time-frequency display is quite well matched to wide-band systems.
This is because of its constantq_ercentage octave bandwidth analysis, logarithmic frequency scale,
and its "per-cycle" time scale that is short at high frequencies and long at low frequencies. On this
type of time-frequency display, the time-fi'equeucy response of "constant-Q" type resonators
remains the same when shifted up and down in frequency. The display is the logi$'al extension to
the time-frequency domain of _lle standard log-frequency response plot. The eq_uivalence of the
wavelet transform antl a system's tone burst response to a time-reversed wavelet was shown.
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